Tuesday, 5 December 2023

How to convert number to words in oracle

Method 1:
A common method for converting a number to words is to use the TO_DATE function and 'j' format to convert the number to a julian date (the number of days since January 1, 4712 B.C.), then use the TO_CHAR function and 'jsp' format to spell the julian date.

I am using below query to convert for this number(1235487) to word.

SELECT TO_CHAR (TO_DATE (1235487, 'j'), 'Jsp') FROM DUAL;

                                                                    OR

SELECT AP_AMOUNT_UTILITIES_PKG.ap_convert_number(1235487) FROM DUAL;

It's return for : One Million Two Hundred Thirty-Five Thousand Four Hundred Eighty-Seven

But i want result like :

Twelve Lakh Thirty Five Thousand Four Hundred Eighty Seven Only

And also it has range from 1 to 5373484 is we put value after 5373484, like 5373485

SELECT TO_CHAR (TO_DATE (5373485, 'j'), 'Jsp') FROM DUAL;

then it will throw you an error

"ORA-01854: julian date must be between 1 and 5373484"

How to achieve this?

Solution:
If you wish to spell numbers greater than the maximum julian date allowed (5373484) or if you wish to include decimal places, or if you wish to have the output in another format or language, then you will need a more complex function that works for larger numbers and include decimal places, other formats, and other languages.

======================Function for Indian Format========================
create or replace function amt_to_word( p_number in number )
return varchar2
as
type myArray is table of varchar2(255);
l_str myArray := myArray(' Thousand ', ' Lakh ',' Crore ', ' Arav ',' Kharav ',' Neel ',' Padma ', ' Shankh ');
l_num varchar2(50) default trunc( p_number );
l_return varchar2(4000);
begin
if (substr( l_num, length(l_num)-2,3 )<>0)
then
l_return := REPLACE (to_char(to_date(substr(l_num, length(l_num)-2, 3),'J'),'Jsp'),'-',' ');
end if;
l_num:=substr( l_num, 1,length(l_num)-3);
for i in 1 .. l_str.count
loop
exit when l_num is null;
if (substr( l_num, length(l_num)-1,2 )<>0)
then
l_return := REPLACE (to_char(to_date(substr(l_num, length(l_num)-1, 2),'J' ),'Jsp'),'-',' ')|| l_str(i) || l_return;
end if;
l_num:=substr( l_num, 1,length(l_num)-2);
end loop;
if to_char( p_number ) like '%.%'
then
l_num := substr(round(p_number,2),instr(p_number,'.')+1);
if (length(substr(round(p_number,2),instr(p_number,'.')+1 )))=1
then
l_num := to_number(to_char(l_num) ||'0');
end if;
if l_num>0
then
l_return :=l_return ||' And' || REPLACE (to_char(to_date(l_num,'J'),' Jsp'),'-',' ')||' Paise';
end if;
end if;
--return(l_return);
return(l_return||' Only');
end amt_to_word;

======================Query=================================
SQL>select amt_to_word(5373485) from dual;

It's return for: Fifty Three Lakh Seventy Three Thousand Four Hundred Eighty Five Only

======================Function for International Format==================
CREATE OR REPLACE FUNCTION APPS.num_to_word (p_number IN NUMBER)
RETURN VARCHAR2
AS
TYPE myArray IS TABLE OF VARCHAR2 (255);
l_str myArray:= myArray ('',' thousand ',' million ',' billion ',' trillion ',' quadrillion ',' quintillion ',
' sextillion ',' septillion ',' octillion ',' nonillion ',' decillion ',' undecillion ',' duodecillion ');
l_num VARCHAR2 (50) DEFAULT TRUNC (abs(p_number));
l_return VARCHAR2 (4000);
V_POS NUMBER;
V_FRACTION VARCHAR2(1000);
BEGIN
FOR i IN 1 .. l_str.COUNT
LOOP
EXIT WHEN l_num IS NULL;
IF (SUBSTR (l_num, LENGTH (l_num) - 2, 3) <> 0)
THEN
l_return :=TO_CHAR (TO_DATE (SUBSTR (l_num, LENGTH (l_num) - 2, 3), 'J'),'Jsp')|| l_str (i)|| l_return;
END IF;
l_num := SUBSTR (l_num, 1, LENGTH (l_num) - 3);
END LOOP;
------------------FOR FRACTION VALUE------------------------
V_POS := INSTR(TO_CHAR(P_NUMBER),'.');
IF V_POS > 0 THEN
SELECT INITCAP(TO_CHAR(TO_DATE(SUBSTR(P_NUMBER,V_POS+1,LENGTH(P_NUMBER)), 'J'), 'JSP')) INTO V_FRACTION FROM DUAL;
l_return := l_return||'Point '||V_FRACTION;
END IF;
RETURN l_return;
END;
/

======================Query=================================
SQL>select num_to_word(5373485) from dual

It's return for: Five million Three Hundred Seventy-Three thousand Four Hundred Eighty-Five

Method 2: 
Number to Word conversion in RTF

xdofx vs xdoxslt

<?xdofx:expression?> for extended SQL functions
<?xdoxslt:expression?> for extended XSL functions.

You cannot mix xdofx statements with XSL expressions in the same context

This function enables the conversion of numbers to words for RTF template output. This is a common requirement for check printing.

The new function is “to_check_number”. The syntax of this function is

<?xdofx:to_check_number(amount, precisionOrCurrency, caseType, decimalStyle)?>

RTF Template Entry
<?xdofx:to_check_number(12345.67, 2)?>

Returned Output
Twelve thousand three hundred forty-five and 67/100

Alternative

<?xdoxslt:toWordsAmt(TEST_AMOUNT)?>

Then it will display amount in words in Indian currency means Rupees not millions but it's showing some wrong spelling of particular number like Fourty.

Example:

<?xdoxslt: toWordsAmt(1244454.88)?>

Then it will display as

Twelve Lakh Fourty Four Thousand Four Hundred Fifty Four and paise Eighty Eight

Alternative

Use the following function in rdf level

IBY_AMOUNT_IN_WORDS.Get_Amount_In_Words(TEST_AMOUNT)

Tuesday, 10 October 2023

How to mask data in HRMS or Any Other Data?

What is Oracle Data Redaction with Examples (Mask your sensitive Data)

There are many cases when data needs to be masked to hide some or all of the data for users working with data.

Oracle Data Redaction is one of the new features introduced in Oracle Database Oracle 12c and back-ported to 11.2.0.4 via patch set(Some examples of implementing Data Redaction using DBMS_REDACT (Doc ID 1588270.1)). This new feature is part of the Advanced Security option and enables the protection of data shown to the user in real-time, without requiring changes to the application.Oracle Data Redaction enables you to mask (redact) data that is returned from queries issued by applications.

Data masking (also known as data scrambling and data anonymization) is the process of replacing sensitive information copied from production databases to test non-production databases with realistic, but scrubbed, data based on masking rules. Data masking is ideal for virtually any situation when confidential or regulated data needs to be shared with non-production users. 

This can be done using Data Redaction in Oracle.Let's see we will look at how these can be used to hide data or mask data.Oracle allow you to mask sensitive data and display only a portion or completely randomize the result. In Oracle, Data Redaction allows you to control every aspect of query execution, so it can be based on user, role, weekday, time, IP, etc. 

Oracle Data Redaction provides the ability to masking data, typically sensitive data in real-time like credit card, Aadhar card details etc. before displaying with application. For example, in a call center, the agent able to view sensitive data in application because of the data they getting from PROD. Those Exposition may lead to privacy regulation and the corresponding user into risk.

Oracle Advanced Security Data Redaction is on-the-fly redaction, i.e., masking of sensitive data in query results prior to display by applications, as shown in the following illustration. It enables consistent redaction of database columns across application modules accessing the same data.

You can redact column data by using one of the following methods:

Full redaction. You redact all of the contents of the column data. The redacted value returned to the querying application user depends on the data type of the column. For example, columns of the NUMBER data type are redacted with a zero (0), and character data types are redacted with a single space.

Partial redaction. You redact a portion of the column data. For example, you can redact a Social Security number with asterisks (*), except for the last 4 digits.

Regular expressions. You can use regular expressions to look for patterns of data to redact. For example, you can use regular expressions to redact email addresses, which can have varying character lengths. It is designed for use with character data only.

Random redaction. The redacted data presented to the querying application user appears as randomly generated values each time it is displayed, depending on the data type of the column.

No redaction. The None redaction type option enables you to test the internal operation of your redaction policies, with no effect on the results of queries against tables with policies defined on them. You can use this option to test the redaction policy definitions before applying them to a production environment.

Oracle Database applies the redaction at runtime when users access the data (that is, at query-execution time). This solution works well in a production system. During the time that the data is being redacted, all of the data processing is performed normally, and the back-end referential integrity constraints are preserved.

Masking Data in Oracle with Data Redaction:
To mask data, use the function below to create a data redaction policy.

DBMS_REDACT.ADD_POLICY ( 
 object_schema               IN VARCHAR2 := NULL, 
 object_name                  IN VARCHAR2 := NULL, 
 policy_name                  IN VARCHAR2, 
 policy_description         IN VARCHAR2 := NULL, 
 column_name                IN VARCHAR2 := NULL, 
 column_description       IN VARCHAR2 := NULL, 
 function_type                 IN BINARY_INTEGER := DBMS_REDACT.FULL, 
 function_parameters      IN VARCHAR2 := NULL, 
 expression                      IN VARCHAR2, 
 enable                             IN BOOLEAN := TRUE, 
 regexp_pattern                IN VARCHAR2 := NULL, 
 regexp_replace_string    IN VARCHAR2 := NULL, 
 regexp_position              IN BINARY_INTEGER :=1, 
 regexp_occurrence         IN BINARY_INTEGER :=0, 
 regexp_match_parameter      IN VARCHAR2 := NULL); 

Important Procedures related to DBMS_REDACT

ProcedureDescription
DBMS_REDACT.ADD_POLICYAdds a Data Redaction policy to a table or view
DBMS_REDACT.ALTER_POLICYModifies a Data Redaction policy
DBMS_REDACT.APPLY_POLICY_EXPR_TO_COLApplies a Data Redaction policy expression to a table or view column
DBMS_REDACT.CREATE_POLICY_EXPRESSIONCreates a Data Redaction policy expression
DBMS_REDACT.DISABLE_POLICYDisables a Data Redaction policy
DBMS_REDACT.DROP_POLICYDrops a Data Redaction policy
DBMS_REDACT.DROP_POLICY_EXPRESSIONDrops a Data Redaction policy expression
DBMS_REDACT.ENABLE_POLICYEnables a Data Redaction policy
DBMS_REDACT.UPDATE_FULL_REDACTION_VALUESGlobally updates the full redaction value for a given data type. You must restart the database instance before the updated values can be used.
DBMS_REDACT.UPDATE_POLICY_EXPRESSIONUpdates a Data Redaction policy expression

It supports the following column data types:

NUMBER, BINARY_FLOAT, BINARY_DOUBLE, CHAR, VARCHAR2, NCHAR, NCLOB, NVARCHAR2, DATE, TIMESTAMP, TIMESTAMP WITH TIME ZONE, BLOB and CLOB.

How to check Redaction policies OR View Existing Data Redaction Policies:
To view existing policies, you can use the code below:

select * from redaction_policies;

SELECT * FROM REDACTION_COLUMNS;

We need to make sure the respective user like apps (in my case redact user) has access to the DBMS_REDACT package.

GRANT EXECUTE ON sys.dbms_redact TO apps/redact;

Example: Let's create a user

$sqlplus / as sysdba

SQL>CREATE USER REDACT IDENTIFIED BY MyPwd;
SQL>GRANT CREATE SESSION TO REDACT;
SQL>ALTER USER REDACT quota unlimited on SYSTEM;
SQL>GRANT CREATE ANY TABLE TO REDACT;
SQL>grant execute on sys.dbms_redact to redact;

SQL>conn redact/MyPwd

Let's create a table
SQL>CREATE TABLE REDACTT
(cust_id     NUMBER NOT NULL
,name        varchar2(20)
,credit_card NUMBER(16)
,exp_date    DATE
,credit_limit NUMBER(6,2)
,email_adr    varchar2(20)
);
 
SQL>INSERT INTO REDACTT
VALUES (8714,'John Smith'    ,6283723982745971,'01-FEB-2017',49.50,'john.smith@gmail.com');
SQL>INSERT INTO REDACTT
VALUES (8743,'Paul McCartney',8995984092832971,'01-APR-2017',150.00,'paul@oracle.com');
SQL>INSERT INTO REDACTT
VALUES (8345,'George Lennon' ,9345945634845567,'01-FEB-2017',19.99,'glennon@qualogy.com');
SQL>INSERT INTO REDACTT
VALUES (9019,'Ricky Star'    ,2383834982340341,'01-JUN-2017',100.00,'star@aol.com');

SQL>set pagesize 200;
SQL>set linesize 300;
SQL>COLUMN credit_card format 0000000000000000
SQL>COLUMN EMAILADR    format a20
SQL>select * from redact.redactt;
 
CUST_ID  NAME      CREDIT_CARD   EXP_DATE  CREDIT_LIMIT  EMAIL_ADR
----------  --------------     -----------------             -----------       ---------------  --------------------
8714     John Smith    6283723982745971   01-FEB-2017    49.5   john.smith@gmail.com
8743     Paul McCar   8995984092832971   01-APR-2017   150     paul@oracle.com
8345     George Le     9345945634845567   01-FEB-2017    19.99  glennon@qualogy.com
9019     Ricky Star     2383834982340341   01-JUN-2017    100     star@aol.com

FULL REDACTION: Add a new policy
SQL>begin
DBMS_REDACT.ADD_POLICY ( 
 object_schema              =>'REDACT', 
 object_name                 =>'REDACTT', 
 policy_name                 =>'REDACT_CARD_POLICY',
 column_name               =>'CUST_ID', 
 function_type               =>DBMS_REDACT.FULL, 
 expression                    =>'1=1'); 
end;
/

Note: Expression of "1=1" means the redaction will always take place.

Check again data mask or not
select * from redact.redactt;

Alter an Existing Policy: Full unmask the data
We can also amend the policy so it does not affect the schema owner. The following example uses the SYS_CONTEXT function in the EXPRESSION parameter to determine the current user, making the application of the redaction policy conditional.

SQL>begin
DBMS_REDACT.ALTER_POLICY ( 
 object_schema              =>'REDACT', 
 object_name                 =>'REDACTT', 
 policy_name                 =>'REDACT_CARD_POLICY',
 column_name               =>'CUST_ID',
 action                            =>DBMS_REDACT.modify_expression,
 expression                     =>'sys_context(''userenv'',''session_user'') != ''REDACT''');
end;
/

Check data unmask or not---
SQL>select * from redact.redactt;

Drop a Data Redaction Policy:
To drop the policy, you can use the code below:
SQL>begin
DBMS_REDACT.DROP_POLICY ( 
 object_schema               =>'REDACT', 
 object_name                  =>'REDACTT', 
 policy_name                  =>'REDACT_CARD_POLICY');
end;
/

PARTIAL REDACTION: Partial Redaction on number values 
In Partial Redaction, the first 12 digits of the credit card numbers are masked with 0. We can mention the function_parameters to achieve this results.

Example 1:
BEGIN
 DBMS_REDACT.ADD_POLICY (
   object_schema       => 'REDACT',
   object_name          => 'REDACTT',
   column_name        => 'CREDIT_CARD',
   policy_name          => 'REDACT_CARD_POLICY',
   function_type        => DBMS_REDACT.PARTIAL,
   function_parameters => '0,1,12',
   expression             => '1=1'
 );
END;
/

Example 2:
Partial redaction can also be done on a date. Here we keep the year, but hide the rest of the date:

BEGIN
 DBMS_REDACT.ADD_POLICY (
   object_schema             => 'REDACT',
   object_name                => 'REDACTT',
   column_name              => 'EXP_DATE',
   policy_name                => 'REDACT_CARD_POLICY',
   function_type               => DBMS_REDACT.PARTIAL,
   function_parameters    => 'm1d1Y',
   expression                    => '1=1' );
END;
/

RANDOM REDACTION:
In Random Redaction the card numbers are transformed to entirely different card numbers as random number.

BEGIN
 DBMS_REDACT.ADD_POLICY (
   object_schema       => 'REDACT',
   object_name          => 'REDACTT',
   column_name        => 'CREDIT_CARD',
   policy_name          => 'REDACT_CARD_POLICY',
   function_type        => DBMS_REDACT.RANDOM,
   expression             => '1=1'
 );
END;
/

OR 

BEGIN
   DBMS_REDACT.ALTER_POLICY(
     object_schema       => 'REDACT',
     object_name          => 'REDACTT',
     column_name        => 'CREDIT_CARD',
     policy_name          => 'REDACT_CARD_POLICY',
     action                     => DBMS_REDACT.modify_column,
     function_type        => DBMS_REDACT.random);
END;
/

REGULAR EXPRESSION:
In this example the customer email address is getting transformed to xxxxxx@domain.com using the regular expression redaction.

BEGIN
    DBMS_REDACT.ADD_POLICY (
           object_schema         => 'REDACT',
           object_name            => 'REDACTT',
           policy_name            => 'REDACT_CARD_POLICY',
           column_name          => 'EMAIL_ADR',
           function_type          => DBMS_REDACT.REGEXP,
           expression               => '1=1',
           enable                      => TRUE,
           regexp_pattern        => '(.){2,}\@([[:alnum:]])',
           regexp_replace_string  => 'xxxxxxx@\2',
           regexp_position            => '1',
           regexp_occurrence       => '0',
           regexp_match_parameter  => 'i'
   );
END;
/

OR

BEGIN
 DBMS_REDACT.ADD_POLICY (
   object_schema           => 'REDACT',
   object_name              => 'REDACTT',
   column_name            => 'EMAIL_ADR',
   policy_name              => 'REDACT_CARD_POLICY',
   function_type            => DBMS_REDACT.REGEXP,
   regexp_pattern          => DBMS_REDACT.RE_PATTERN_EMAIL_ADDRESS,
   regexp_replace_string   => DBMS_REDACT.RE_REDACT_EMAIL_NAME,
   regexp_position             => DBMS_REDACT.RE_BEGINNING,
   regexp_occurrence         => DBMS_REDACT.RE_ALL,
   expression                      => '1=1'
 );
END;
/

Exceptions:
If you have the EXEMPT REDACTION POLICY system privilege, data is never redacted.Redaction is also never used in the following situations:

connections as SYS
database replication
backup and restore
export and import

SYS and DBA privileged schema over DBMS_REDACT
The sys and dba privileged schemas can view the details of columns masked using DBMS_REDACT.

$sqlplus / as sysdba
SQL>set pagesize 200;
SQL>set linesize 300;
SQL>select * from redact.redactt;