What is Oracle Data Redaction with Examples (Mask your sensitive Data)
There are many cases when data needs to be masked to hide some or all of the data for users working with data.
Oracle Data Redaction is one of the new features introduced in Oracle Database Oracle 12c and back-ported to 11.2.0.4 via patch set(Some examples of implementing Data Redaction using DBMS_REDACT (Doc ID 1588270.1)). This new feature is part of the Advanced Security option and enables the protection of data shown to the user in real-time, without requiring changes to the application.Oracle Data Redaction enables you to mask (redact) data that is returned from queries issued by applications.
Data masking (also known as data scrambling and data anonymization) is the process of replacing sensitive information copied from production databases to test non-production databases with realistic, but scrubbed, data based on masking rules. Data masking is ideal for virtually any situation when confidential or regulated data needs to be shared with non-production users.
This can be done using Data Redaction in Oracle.Let's see we will look at how these can be used to hide data or mask data.Oracle allow you to mask sensitive data and display only a portion or completely randomize the result. In Oracle, Data Redaction allows you to control every aspect of query execution, so it can be based on user, role, weekday, time, IP, etc.
Oracle Data Redaction provides the ability to masking data, typically sensitive data in real-time like credit card, Aadhar card details etc. before displaying with application. For example, in a call center, the agent able to view sensitive data in application because of the data they getting from PROD. Those Exposition may lead to privacy regulation and the corresponding user into risk.
You can redact column data by using one of the following methods:
Full redaction. You redact all of the contents of the column data. The redacted value returned to the querying application user depends on the data type of the column. For example, columns of the NUMBER data type are redacted with a zero (0), and character data types are redacted with a single space.
Partial redaction. You redact a portion of the column data. For example, you can redact a Social Security number with asterisks (*), except for the last 4 digits.
Regular expressions. You can use regular expressions to look for patterns of data to redact. For example, you can use regular expressions to redact email addresses, which can have varying character lengths. It is designed for use with character data only.
Random redaction. The redacted data presented to the querying application user appears as randomly generated values each time it is displayed, depending on the data type of the column.
No redaction. The None redaction type option enables you to test the internal operation of your redaction policies, with no effect on the results of queries against tables with policies defined on them. You can use this option to test the redaction policy definitions before applying them to a production environment.
Oracle Database applies the redaction at runtime when users access the data (that is, at query-execution time). This solution works well in a production system. During the time that the data is being redacted, all of the data processing is performed normally, and the back-end referential integrity constraints are preserved.
Masking Data in Oracle with Data Redaction:
To mask data, use the function below to create a data redaction policy.
DBMS_REDACT.ADD_POLICY (
object_schema IN VARCHAR2 := NULL,
object_name IN VARCHAR2 := NULL,
policy_name IN VARCHAR2,
policy_description IN VARCHAR2 := NULL,
column_name IN VARCHAR2 := NULL,
column_description IN VARCHAR2 := NULL,
function_type IN BINARY_INTEGER := DBMS_REDACT.FULL,
function_parameters IN VARCHAR2 := NULL,
expression IN VARCHAR2,
enable IN BOOLEAN := TRUE,
regexp_pattern IN VARCHAR2 := NULL,
regexp_replace_string IN VARCHAR2 := NULL,
regexp_position IN BINARY_INTEGER :=1,
regexp_occurrence IN BINARY_INTEGER :=0,
regexp_match_parameter IN VARCHAR2 := NULL);
Procedure | Description |
---|---|
DBMS_REDACT.ADD_POLICY | Adds a Data Redaction policy to a table or view |
DBMS_REDACT.ALTER_POLICY | Modifies a Data Redaction policy |
DBMS_REDACT.APPLY_POLICY_EXPR_TO_COL | Applies a Data Redaction policy expression to a table or view column |
DBMS_REDACT.CREATE_POLICY_EXPRESSION | Creates a Data Redaction policy expression |
DBMS_REDACT.DISABLE_POLICY | Disables a Data Redaction policy |
DBMS_REDACT.DROP_POLICY | Drops a Data Redaction policy |
DBMS_REDACT.DROP_POLICY_EXPRESSION | Drops a Data Redaction policy expression |
DBMS_REDACT.ENABLE_POLICY | Enables a Data Redaction policy |
DBMS_REDACT.UPDATE_FULL_REDACTION_VALUES | Globally updates the full redaction value for a given data type. You must restart the database instance before the updated values can be used. |
DBMS_REDACT.UPDATE_POLICY_EXPRESSION | Updates a Data Redaction policy expression |
It supports the following column data types:
NUMBER, BINARY_FLOAT, BINARY_DOUBLE, CHAR, VARCHAR2, NCHAR, NCLOB, NVARCHAR2, DATE, TIMESTAMP, TIMESTAMP WITH TIME ZONE, BLOB and CLOB.
How to check Redaction policies OR View Existing Data Redaction Policies:
To view existing policies, you can use the code below:
select * from redaction_policies;
SELECT * FROM REDACTION_COLUMNS;
We need to make sure the respective user like apps (in my case redact user) has access to the DBMS_REDACT package.
GRANT EXECUTE ON sys.dbms_redact TO apps/redact;
Example: Let's create a user
$sqlplus / as sysdba
SQL>CREATE USER REDACT IDENTIFIED BY MyPwd;
SQL>GRANT CREATE SESSION TO REDACT;
SQL>ALTER USER REDACT quota unlimited on SYSTEM;
SQL>GRANT CREATE ANY TABLE TO REDACT;
SQL>grant execute on sys.dbms_redact to redact;
SQL>conn redact/MyPwd
Let's create a table
SQL>CREATE TABLE REDACTT
(cust_id NUMBER NOT NULL
,name varchar2(20)
,credit_card NUMBER(16)
,exp_date DATE
,credit_limit NUMBER(6,2)
,email_adr varchar2(20)
);
SQL>INSERT INTO REDACTT
VALUES (8714,'John Smith' ,6283723982745971,'01-FEB-2017',49.50,'john.smith@gmail.com');
SQL>INSERT INTO REDACTT
VALUES (8743,'Paul McCartney',8995984092832971,'01-APR-2017',150.00,'paul@oracle.com');
SQL>INSERT INTO REDACTT
VALUES (8345,'George Lennon' ,9345945634845567,'01-FEB-2017',19.99,'glennon@qualogy.com');
SQL>INSERT INTO REDACTT
VALUES (9019,'Ricky Star' ,2383834982340341,'01-JUN-2017',100.00,'star@aol.com');
SQL>set pagesize 200;
SQL>set linesize 300;
SQL>COLUMN credit_card format 0000000000000000
SQL>COLUMN EMAILADR format a20
SQL>select * from redact.redactt;
CUST_ID NAME CREDIT_CARD EXP_DATE CREDIT_LIMIT EMAIL_ADR
---------- -------------- ----------------- ----------- --------------- --------------------
8714 John Smith 6283723982745971 01-FEB-2017 49.5 john.smith@gmail.com
8743 Paul McCar 8995984092832971 01-APR-2017 150 paul@oracle.com
8345 George Le 9345945634845567 01-FEB-2017 19.99 glennon@qualogy.com
9019 Ricky Star 2383834982340341 01-JUN-2017 100 star@aol.com
FULL REDACTION: Add a new policy
SQL>begin
DBMS_REDACT.ADD_POLICY (
object_schema =>'REDACT',
object_name =>'REDACTT',
policy_name =>'REDACT_CARD_POLICY',
column_name =>'CUST_ID',
function_type =>DBMS_REDACT.FULL,
expression =>'1=1');
end;
/
Check again data mask or not
select * from redact.redactt;
Alter an Existing Policy: Full unmask the data
We can also amend the policy so it does not affect the schema owner. The following example uses the SYS_CONTEXT function in the EXPRESSION parameter to determine the current user, making the application of the redaction policy conditional.
SQL>begin
DBMS_REDACT.ALTER_POLICY (
object_schema =>'REDACT',
object_name =>'REDACTT',
policy_name =>'REDACT_CARD_POLICY',
column_name =>'CUST_ID',
action =>DBMS_REDACT.modify_expression,
expression =>'sys_context(''userenv'',''session_user'') != ''REDACT''');
end;
/
Check data unmask or not---
SQL>select * from redact.redactt;
Drop a Data Redaction Policy:
To drop the policy, you can use the code below:
SQL>begin
DBMS_REDACT.DROP_POLICY (
object_schema =>'REDACT',
object_name =>'REDACTT',
policy_name =>'REDACT_CARD_POLICY');
end;
/
PARTIAL REDACTION: Partial Redaction on number values
In Partial Redaction, the first 12 digits of the credit card numbers are masked with 0. We can mention the function_parameters to achieve this results.
Example 1:
BEGIN
DBMS_REDACT.ADD_POLICY (
object_schema => 'REDACT',
object_name => 'REDACTT',
column_name => 'CREDIT_CARD',
policy_name => 'REDACT_CARD_POLICY',
function_type => DBMS_REDACT.PARTIAL,
function_parameters => '0,1,12',
expression => '1=1'
);
END;
/
Example 2:
Partial redaction can also be done on a date. Here we keep the year, but hide the rest of the date:
BEGIN
DBMS_REDACT.ADD_POLICY (
object_schema => 'REDACT',
object_name => 'REDACTT',
column_name => 'EXP_DATE',
policy_name => 'REDACT_CARD_POLICY',
function_type => DBMS_REDACT.PARTIAL,
function_parameters => 'm1d1Y',
expression => '1=1' );
END;
/
RANDOM REDACTION:
In Random Redaction the card numbers are transformed to entirely different card numbers as random number.
BEGIN
DBMS_REDACT.ADD_POLICY (
object_schema => 'REDACT',
object_name => 'REDACTT',
column_name => 'CREDIT_CARD',
policy_name => 'REDACT_CARD_POLICY',
function_type => DBMS_REDACT.RANDOM,
expression => '1=1'
);
END;
/
OR
BEGIN
DBMS_REDACT.ALTER_POLICY(
object_schema => 'REDACT',
object_name => 'REDACTT',
column_name => 'CREDIT_CARD',
policy_name => 'REDACT_CARD_POLICY',
action => DBMS_REDACT.modify_column,
function_type => DBMS_REDACT.random);
END;
/
REGULAR EXPRESSION:
In this example the customer email address is getting transformed to xxxxxx@domain.com using the regular expression redaction.
BEGIN
DBMS_REDACT.ADD_POLICY (
object_schema => 'REDACT',
object_name => 'REDACTT',
policy_name => 'REDACT_CARD_POLICY',
column_name => 'EMAIL_ADR',
function_type => DBMS_REDACT.REGEXP,
expression => '1=1',
enable => TRUE,
regexp_pattern => '(.){2,}\@([[:alnum:]])',
regexp_replace_string => 'xxxxxxx@\2',
regexp_position => '1',
regexp_occurrence => '0',
regexp_match_parameter => 'i'
);
END;
/
OR
BEGIN
DBMS_REDACT.ADD_POLICY (
object_schema => 'REDACT',
object_name => 'REDACTT',
column_name => 'EMAIL_ADR',
policy_name => 'REDACT_CARD_POLICY',
function_type => DBMS_REDACT.REGEXP,
regexp_pattern => DBMS_REDACT.RE_PATTERN_EMAIL_ADDRESS,
regexp_replace_string => DBMS_REDACT.RE_REDACT_EMAIL_NAME,
regexp_position => DBMS_REDACT.RE_BEGINNING,
regexp_occurrence => DBMS_REDACT.RE_ALL,
expression => '1=1'
);
END;
/
Exceptions:
If you have the EXEMPT REDACTION POLICY system privilege, data is never redacted.Redaction is also never used in the following situations:
connections as SYS
database replication
backup and restore
export and import
SYS and DBA privileged schema over DBMS_REDACT
The sys and dba privileged schemas can view the details of columns masked using DBMS_REDACT.
$sqlplus / as sysdba
SQL>set pagesize 200;
SQL>set linesize 300;
SQL>select * from redact.redactt;
No comments:
Post a Comment